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Limits of the generalised Tomimatsu-Sat0 gravitational fields 

Christopher M Cosgrove 
Department of Applied Mathematics, University of Sydney, Sydney, NSW 2006, 
Australia 

Received 21 March 1977, in final form 4 August 1977 

Abstract. In a previous paper, the author presented a new three-parameter family of exact 
asymptotically flat stationary axisymmetric vacuum solutions of Einstein’s equations which 
contains the solutions of Kerr and Tomimatsu-Sato (TS) as special cases. In this paper, we 
consider two interesting special cases of the previous family which must be constructed by 
a limiting process. These will be interpreted as a ‘rotating Curzon metric’ and a ‘general- 
ised extreme Kerr metric’. In addition, approximate forms for the original metria will be 
given for the cases of slow rotation and small deformation. 

1. Introduction 

In this paper, we shall discuss certain limiting cases of the generalised Tomimatsu- 
Sato (TS) solutions of Einstein’s equations presented in an earlier paper by the author 
(Cosgrove 1977, to be referred to as I). These solutions represent the asymptotically 
flat vacuum gravitational fields exterior to finite rotating bodies whose mass and 
angular momentum multipoles depend on precisely three parameters, m, 4 and S. The 
physical meaning of these parameters is given by 

mass = m, (1 . la)  

angular momentum, J = m‘q, ( l . l b )  

mass quadrupole, Q = m3[q’+p2(S2-  1)/3S2), (1.lC) 
2 where p = 1-4’. The case S = 1 is the Kerr solution and the cases S = 2, 3 , 4  are the 

Tomimatsu-Sato solutions (TS 1973). When 6 is an integer, the metric coefficients are 
rational or polynomial functions of certain prolate spheroidal coordinates and some of 
the many remarkable properties of these polynomials are outlined in 0 11 of I. When 
6 is not an integer, they are transcendental functions which depend on the solutions of 
two independent ordinary differential equations. These solutions may be computed 
efficiently, even in the highly curved inner regions of space-time, from rapidly con- 
vergent infinite series. When 4 = 0, the solutions reduce to the spheroidally symmetric 
static solutions studied by Zipoy (1966) and Voorhees (1970). 

All the multipoles of the gravitational field are analytic functions of m, 4 and 
for -CO c m < CO, -CO < q C CO, -CO C c CO. However, in I, we considered in detail 
only the parameter ranges, - l < q < l  and O < S - 2 < ~ ,  i.e. S real, because of our 
choice of coordinates and, of course, only positive mass was considered. Nevertheless, 
by replacing prolate spheroidal coordinates with oblate spheroidal and making other 
minor adjustments, it is easy to apply the formulae and methods of I to the ranges, 
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141 > 1 and S-'< 0, i.e. S pure imaginary. Only certain limiting cases require special 
attention. In 8 4, we shall discuss the case S = 00, the 'rotating Curzon metric', which 
reduces to the static Curzon metric when q = 0. The other case, discussed in 0 5 ,  is the 
limit q -* *1 and S + 0 such that p S  =pl is held fixed. This is a two-parameter solution 
generalising the extreme Kerr solution and reducing to the latter when p1 = 0. It is 
well known (TS 1973) that the limit q + *l with S held fixed always yields the extreme 
Kerr metric, irrespective of S. Before presenting these two exact solutions, we shall 
consider, in 0 3, approximate forms for the general metric for the cases of slow 
rotation, 141<< 1, and small deformation, 16- lI<< 1. 

Many of the notations and methods of this paper are taken from I and so it is 
recommended that the reader be acquainted with that paper. In particular, the rather 
lengthy proofs that the metrics actually satisfy Einstein's vacuum field equations, are 
asymptotically flat and have all singularities confined to a bounded region of space are 
given in I and will not be repeated here. Numbered equations in I will be denoted, for 
example, by I(4.2), to be read as equation (4.2) from I. 

2. The generalised Tomimatsu-Sato solutions 

Take the metric of (stationary axisymmetric) space-time in the Weyl-Lewis- 
Papapetrou canonical form, 

ds2 = e2'(df - w dr$)2-e-2u[e2Y(dr2 + dz2)+ r2  dq5'1, (2.1) 
where r, z,  q5 and f are cylindrical coordinates and time and U, w and y are functions of 
r and z only. In terms of the metric coefficients, construct the (real) Ernst potential + 
and the complex Ernst potentials, ZS and 6 (Ernst 1968, 1974), according to 

where qhr denotes a+/&, etc. The generalised TS solutions are constructed from two 
ordinary differential equations (DE) of the second order for functions, H 4 ( q )  and 
K(')(v, q), where the new coordinates (v, q )  are defined by 

v = Y / X ,  17 =(x2-1)/(1-Y2), (2.4) 
where (x ,  y) are the usual prolate spheroidal coordinates defined by 

w = ~ [ 2 S q p - ~ - 2 H 2 e - ~ ' - ( l - v ~ ) + , ,  e-4u], 

e'' = (1 + i/q)-62r(q), 

where KY) and KP),  E = rtl,  are the two linearly independent solutions of the linear 
Fuchsian DE I(3.8) for K'" satisfying boundary conditions 1(3.9), K'-" is related to 
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K'" by 1(3.12), and the functions, H4, H2, u1, u2, r and A, each functions of q only, 
are related to each other by 1(3.3)-1(3.7) and so are all determined by solving either 
the H4 equation I(3.1) (or, equivalently, I(lO.l)), or the r equation, I(10.4) or I(10.5). 
The parameters, q and S, appear in the DE for &(q) and K'')(v, q )  and their 
boundary conditions, and the parameter identifications (1.1) will hold if we take 
K = mpS-' where p = (1 -q2)'". Where no confusion can arise, the superscript ' ( E ) '  

will be dropped from K'", K?' and K?). The second-order K equation may be 
replaced by the L equation I(10.40) or the third-order F equation I(7.3) which has Fl, 
F2 and F3 as linearly independent solutions. 

Knowledge of the function H4(77) is sufficient to determine the metric on the 
equatorial plane, v = 0 (see 1(4.23)), and e'' everywhere. On the infinite redshift 
surfaces, q = qo, ql, 772,. . . , where the vi are the zeros of r(q), the K equation 
simplifies (slightly) to a Lami equation and the metric coefficient w e'" becomes a 
rational function of v. On the symmetry axis, y = *l, all of the metric coefficients and 
Ernst potentials and their normal derivatives assume very simple elementary 
functional forms. For example, the complex Ernst potential, 5, and its normal deriva- 
tive, & = a t / a y  (with x constant), are given on y = *l by 

(x + 1y + (x - 1)6 
= (x + 1y - ( x  - ly 

-4ia2q(x2 - I)'-' 
5y = [(x + 1)6 -(x - 1)*12' 

-hY, ( 2 . 9 ~ )  

(2.9b) 

A ring-shaped curvature singularity resides on the equatorial plane of every 
second infinite redshift surface (q = 771,773,775,. . . , but not q = v0, the outermost 
surface). These values of 77 are those zeros of r(7) which are also zeros, as distinct 
from poles, of A(v). When 6 is not an integer, the surfaces, 77 = 0 (i.e. x2  = 1) and 
7 = -1 (i.e. x 2  = y'), are curvature singularities. Consequently, the surface x = 1 is a 
natural boundary for the exterior vacuum solution. When S is an integer and q # 0, 
these surfaces are non-singular although, if S # 1, the poles, x2  = 1, y 2  = 1, exhibit a 
coordinate-type directional singularity (see Economou 1976 and Ernst 1976 for the 
case S = 2). 

3. Slow rotation and small deformation 

3.1. Slow rotation, 1q1<< 1 

When q = 0, the generalised TS solutions reduce to the static Zipoy-Voorhees solu- 
tions (Zipoy 1966, Voorhees 1970). For this case 

H ~ ( ~ )  = s2, r(q) = 1. 

The most useful form for the perturbation expansion for small q is 

r(77)=r(q,q2)= i+q2p-2r1(q)+q 4 P -4 r d T ) + q  6 P -6 r3(77)+. . . . (3.1) 
However, as emphasised in I, this power series in 42p-2  is in no way restricted to small 
q. It converges extremely rapidly for all q (even q 2 =  1 when q is appropriately 
rescaled) and all q not near 0 or -1. The function, r(q), as well as the coefficients, 
rl(v), r2(77), . . . , are analytic functions of q in the complex 77 plane cut from 77 = -1 



2096 C M Cosgrove 

to 7 = 0. When S is an integer, the coefficients are polynomials in 77-l and the series 
terminates at r8(77)= (-1) 77 8 -82 so that r(q) is a polynomial in 7I-l of degree 6’. 

To construct the coefficients in (3. l), first construct the hypergeometric function, 

W=r/-’2F,(l+S, 1-6;2; --7p), (3.2) 
satisfying the DE, 

77 (1 + ) W” + (1 + 277) W’ - S2.q - l  W = 0. (3.3) 
Thence construct 

v = S2r/(1 +77)W’2-S477-1 W 2 ,  (3.4) 
satisfying either of the equivalent DE, I(10.10) or I(10.11). The first two coefficients, 
rl(q) and r2(77), are readily obtainable by quadratures from 

ri= V, (3.5) 
vr; - v’r; = v3 - s8 w4wi2 - ~ ~ ~ ~ ( 1  + 77)2 w2 wf4 

m 

- 4S877 -’( 1 + q)-l WW’ I A (1 + A )(2 + A )( W(A ) W’(A ))2 dA. (3.6) 
11 

Formulae for r3, r4,. . . are rather complicated. The coefficient r, is obtained from 
rl, . . . , rn-l by substituting the series (3.1) into the third-order equation I(10.4) and 
selecting the coefficient of (q2p-2)”+1. The resulting third-order linear DE for r, may 
be integrated completely by three quadratures (see I(10.30)). As a power series in 
q-l, rn(q) starts with the term k,q-“’, i.e. 

r,(77) = kn77-n2+o(77-nz-1) as 77 +CO, (3.7) 

where k, is given by I(10.34) and has asymptotic formula I(10.35) for large n. Two 
most important properties of the series (3.1) are 

The leading terms in the perturbation expansions for H4, H2, u1, u2 and A are 
given by 

H4 = S2 + q 2q (1 + 77 ) V + 0 ( q 4 ) ,  

H2 = -Sqv(l+ 17) W ’ +  0(q3), 

U1 = ST-l -tS-1q2[T (1 + 7 ) V ’  + 7 VI + 0(q4), 

( 3 . 1 0 ~ )  

(3. lob) 

(3 .10~)  

~2 = S2q W + 0(q3), 

A = [(1+ q)l12+ 1]*[(1+ 77)1’2 - 1]-6(1 + O(q2)), 

(3.10d) 

(3.10e) 
as q + O .  

To solve the K equation in ascending powers of q, consider, first, the zeroth 
approximation, i.e. put q = 0 in I(3.8). This equation is easily put into hypergeometric 
form and the particular solutions, K1 and K2, are found to be 

(3.1 l a )  

(3.11b) 

K1= [(l +7#12+ 1]-y1- vZ)-18[(l +7#/2+(1 +Y/v 2 ) 1/2 ] 8 , 
2 1/2 6 

~2 = ei[(l+ T ) ” ~ -  11-’(1- v2)-”[(1 + q)1/2- ( l + ~ v  ) 1 .  
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Higher approximations may now be obtained by quadratures by well known methods. 
However, we.shal1 derive the first approximation to the complex Ernst potential 5 by a 
more direct and elegant method. The result will be seen to agree with ‘rule (g)’ of 
Tomimatsu and Sato (1973). 

In 0 7 of I, it was shown that the functions F1, F2 and F3 defined by (2.5) may be 
obtained as linearly independent solutions of a third-order linear DE and, further, the 
form of this DE for arbitrary curvilinear coordinates was given. We shall choose the 
case of spheroidal coordinates (x, y) where x is the independent variable and y is a 
constant parameter. Note that H4, Hz,  (TI and (TZ, which appear as constants in the DE 

I(3.8) and I(7.3), are now functions of the independent variable. The required F 
equation is I(7.15) with 0 and CP given by I(7.20) and I(7.21) respectively. The 
boundary conditions at x = CO are given by I(8.9). 

Now consider the slow rotation approximation for the F equation correct to order 
4. From (3.10), we find 

4x2 W”(7) 
F,,, +(--- x2-1 2x 1 - y 2  2x - W’(7) W”(7))F,,+(-2x2+2+4S2 (x2- 1)2 - (x2- 1)(1 -y2) -)Fx W ( 7 )  

Two solutions are immediately obvious. They are 

(3.12) 

(3.13) 

and F3 = Fl-’ + O(q2). The third solution is obtainable by quadratures in the form, 

z + l  8 
F~ = -4 e-2’ = - [ ( ~ ~ ~ ) 8 / x m ( z 2 - l ) ( - )  - W’(T)dz (1 - Y 2)2 2 - 1  

- ( - ) 8  x + l  lxm ( ~ ~ - l ) ( ~ ) ~ W ’ ( 7 ) d z ] + O ( q ~ ) ,  
x-1  z + l  

where 7 = (2’- 1)/(1- y2)  in the integrands in (3.14). From (3.2), 

W’(~)=-7-~2F1(1+S,  1-6 ;  1; -7-l). 

Now ‘rule (g)’ of TS states that 

5 = 50 + iq& + oh2), 
where 

(X+1)6+(X-1)* 
(x + 1y -(x - 1)6* 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

where P21-1(y) is the Legendre polynomial of degree 21 - 1, P z l - l ( l )  = 1 and U ~ I - I ( X )  
satisfies 

(x2- l ) a i ; - ~ ( x ) - ( 4 S - 2 ) x a ~ l - ~ ( x ) + ( 4 S 2 - 2 S - 4 1 2 + 2 1 ) a 2 r - ~ ( x ) = 0 .  (3.18) 

The result (3.13) verifies (3.16) which is the Ernst potential for the Zipoy-Voorhees 
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metric. From (3.14) and (3.15), the coefficients a ~ * - ~ ( x )  in (3.17) may be calculated 
explicitly. After some manipulation of infinite series and application of well known 
theorems on Legendre, 'F1 and 3F2 functions, the result is 

(Here, r is the familiar gamma function of Euler.) This a z ~ - ~ ( x )  satisfies (3.18) 
thereby verifying TS 'rule (g)'. Of course, (3.19) makes the rule more precise by 
providing the exact numerical coefficient and also is not restricted to integer values 
of S. 

If S is an integer, the series (3.17) terminates at 1 = S since for 1s S + 1, a negative 
integer factorial appears in the denominator of (3.19). In addition, the hyper- 
geometiic series in (3.19) terminates so that U ~ * - ~ ( X )  is a polynomial in x 2  of degree 
8-1. 

3.2. Small deformation, IS - 1) << 1 

The case S = 1 is precisely the Kerr solution. Let us consider, briefly, the approximate 
form of the metric when 

s ' = i + e ,  

where e is small. The calculations are easier in this case than in the case of q small. 
Let 

P2r(77)= Yo(77)+eY1(77)+eZy2(77)+. * * (3.20) 

The leading coefficient yo(q)  may be obtained from (2.8) using the known functional 
form of e'' for the Kerr solution. Thus 

(3.21) 2 -1 
Y o ( 7 7 ) = P 2 - 4  77 ' 

Substituting the series (3.20) into the third-order r equation 1(10.4), we find 

$(1+ 7)'yII)f 77(4+ 5 7 7 ) ~ :  +2(1+ 277)~; = q ' ~ - ~ ,  

which may be integrated immediately by three quadratures to give 

y1 = + TI-') In(l+ q-'). (3.22) 

The remaining coefficients, y ~ , y 3 , .  . . , satisfy inhomogeneous DE whose homo- 
geneous parts are the same as for y1 and may therefore be solved in terms of 
elementary functions and quadratures. For example, 

y2 = i q 2 p - 2 (  (-1 +2q2)(1 + 77-l) ln2(1 + Vw1)+ 7-l ln( l+ 7-l) 
m 

-277-1 A-'ln(l+A-')dA). (3.23) 

Alternatively, the rapidly converging series expansion (3.1) may be used to con- 
struct a perturbation expansion for r(7) for small 8. If each rn(q) is expressed as a 
power series in 8, then r,,(T) starts with the term in 

Construction of the perturbation expansion for the full Ernst potentials is rather 
tedious. It is straightforward in principle to solve the K equation I(3.8). For the 

n 3 1. 
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zeroth approximation, put 6 = 1 in I(3.8).  On changing dependent variable to 

M = (1 - u2)1/2(l + qu2)-1/2K,  

this DE simplifies to 

(3 .24 )  

which is readily solved to give the particular solutions, 

K' = [p(l  +q)'/'+ 1]-'(1- uZ)-'"[(1 +q)' l2(p -t:iqv)+ (1 + q ~ ~ ) ' / ~ ] ,  ( 3 . 2 5 ~ )  

K~ = ei[P(l+ q)l"- 1]-'(1- vZ)-'I2[(1 + q)'/'(p - eiqv)- (1 + qu2)' / ' ] ,  ( 3 , 2 5 6 )  

satisfying the boundary conditions I(3.9).  Further terms in the perturbation expan- 
sions for K1 and K2 may be found by solving inhomogeneous DE whose homogeneous 
parts are the same as for M in (3 .24) .  

It is, however, a little quicker to solve the F equation I(7.15) in spheroidal 
coordinates. The results, to the first approximation, are: 

(x2 - l)(yo+ By1 + 8'y2 + . . .) ew2" 

x2-y2 
= (px + 1)' + q2y + ep-' -q2(px2 - py + x )  In 7 ( x -1 

(3 .26 )  

+ ') + o(e2). 
x'- y' 

(x2- l ) (yo+ eyl + e Z y 2 + .  , . )4 e-" = -2qy - eg y In y + x  In - ( x - 1  x-Y 
(3 .27 )  

The complex Ernst potential 6 is given by 

x z - y 2  
-4q(qx +ipy) In 2 6 = px - iqy + e p  -'i x -1 

(3 .28 )  + ~ [ ~ - ( p x - i q y ) ~ ] ~ n - -  x + l  $q(px -iqy) In -) X + Y  + o(e2). 
x - 1  X - Y  

As for the unperturbed Kerr solution, this space-time has two infinite redshift 
surfaces. They are the ellipsoid-like surf aces, 

p 2 x Z =  1 - q ~ y ~ - 2 e q ~ p - ~  lnlql. ( i -y2)+o(e2) .  

However, the inner surface, which carries the equatorial ring singularity, is contained 
within the singular surface x = 1. The outer surface is non-singular except at the 
poles, y z  = 1, where it touches the surface x = 1. 4Note that, in these formulae, the 
coordinates (x, y) and (U, q )  also depend on 6 because K = mp8-I = mp(1 -+e + . . .) 
and a similar comment applies to the case of q small. 

4. The rotating Cunon metric, 6 = 00 

The limit S + 00 is quite regular if viewed in canonical (r, z )  coordinates. This is well 
known in the static case, 9 = 0. The result is the Curzon metric (Curzon 1924, 
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Voorhees 1970), 

U = -mp-', w =o, y = -2m p sin2 e, 4 = coth(mp-'), (4.1) 1 2 -2 

where the coordinates (p, e) are defined by r = p sin 8, z = p  cos 8. The rotating 
Curzon metric, which we are about to construct, has mass m, angular momentum m2q 
and mass quadrupole $m '( 1 + 24'). 

Since K -P 0 as S -f CO, the coordinates (v, v) and (x ,  y )  are not defined when S = 00. 

This difficulty is easily avoided if we choose rescaled coordinates (s, A )  as follows: 

S = Sv, A = S-2v. (4.2) 

s = mpp-' cos e, (4.3) 

The limiting forms as S -f og are 

A = (mp)-'p2 cosec' e. 
The theory of the generalised TS solutions may be readily transferred to the S = CO 

case by rescaling, appropriately, the functions, H4, H2, etc, before taking the limit. 
Rescaled quantities will be denoted by a tilde. Inspection of equations I(6.4)-I(6.7), 
which express H4, H2,  and cr2 in terms of the metric coefficients, U and w ,  reveals 
that we should rescale H4, Hz,  u1, U?, I' and A as follows: 

f i 4  = S-'H4, f i 2  = S-'H2, 51 = Sal, (4.4C2, b, c) 

6 2  -= u 2 ,  f=r ,  A = h .  (4.44 e, f )  
Interpret fi4 as f i 4 ( A ) ,  etc. Hereafter, the tilde will be omitted from f and A. It is 
straightforward, now, to rewrite the defining relations, I(3.3)-1(3.7), for S = CO. 

With a prime denoting d/dA, the two equivalent equations, I(3.1) and I(lO.l), for 
H4 become 

A 4 ~ ~ ' = 4 ~ ~ ( - f i 4 + A t i 4 ) ) ( - 1  + f i 4 - A f i i ) ,  (4.5u) 
A 4 f i J  + 2A 

and the boundary condition at A = CO is 

+ 6A 2fii2 - 8Afi&l+ 2fi: + 4Afil- 2& = 0, (4.5b) 

f i 4  =p-' f o(A-'). (4.6) 
From (4.5~2, b), two equivalent DE for 

power series 

may be constructed. 
As before, the most efficient way of solving the r equation is to construct the 

r=r(A,q2)= i + q 2 p - 2 r 1 ( ~ ) + q 4 p - 4 r 2 ( ~ ) + .  . . . (4.7) 

where Il is the modified Bessel function of order one. This function satisfies 

(4.9) + 2A -1 f i t  - A - 3 f i  = 0. 

(4.10~) 
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where 'F2 is a special case of the generalised hypergeometric function, pF4. Q satisfies 
either of the two equivalent DE, 

(4.11a) 

(4.1 16) 

(A 217"+4A Q' + 2 p)' = 4A Qt2+ 12 w'+ 8A-' V 2 ,  
A 4  P + 8A Vfr  + (14A2 -4A)Q'+ (4A - 6)V = 0. 

These two functions may be obtained from the W and V of 3.1 by the rescalings, 

@=S'W, V = S 2 V .  (4.12) 

The coefficient rl and its derivative r; are given explicitly by 

rl = -2A @ I 2  - A 2  mf + 2 p2, (4.13a) 

r;= V, (4.13b) 

and r2 may be found by quadratures from 

Qr;- Vir;= V3-A4@2@f4-4A-2 J CL3(@(cL)@'(CL))2 dCL. (4.14) 
A 

To compute further coefficients, substitute the series (4.7) into the third-order r 
equation derived from ( 4 . 5 ~ ) .  The coefficient of (q2p-2)nc' yields a third-order 
DE for T,(A) of the form 

( A 4  P + 4 A  P + 2A Qjrr + [4A Q"+ (16A 2-4A >VI + (8A - 6)V] r :  
+ [2A Q'' t. (8A - 6)4'+ (4 - 8A -')V]I'k = G,(A), (4.15) 

where G,(A) is a quartic polynomial (cubic if n = 2) in rl, r2,. . . , and their 
derivatives up to the third order. An integrating factor for (4.15) is the function, (m')-'Q, Hence, a first integral for (4.15) is 

Qr"- Qq-' = 1 -2 
n 2A fi@' IAm (~(CL)@f(CL))-2Q(CL)Gn(CL)dCL. (4.16) 

It is now straightforward to obtain r, explicitly by two more quadratures. 

with the term k,A-"', i.e. 
The series (4.7) converges extremely rapidly. As a power series in A-' ,  r, starts 

r,(A) = k,A-"2+O(A-n2-1) asA +CO, (4.17) 

where 

(4.18) kn=( - l )"{~"(n2-I )" - ' (n2-4 )n-2 (~2-9 )n-3 .  . . [n2- (n -1 )  2 I} -2 . 

The asymptotic form of k ,  for large n is 

lknl - (0.806285196 . . . ) ( 4 t ~ ) - ~ " ~  e3n2n-1/6. (4.19) 

Two useful results, corresponding to (3.8) and (3.9), are 

1 - r l ( ~ ) + r 2 ( ~ ) - r 3 ( h ) + .  . .=e'/*, 

r(A, q2)=e'lAr(-A, l /q2).  

(4.20) 

(4.21) 

The function r(A) is analytic throughout the complex A plane except for an isolated 
essential singularity at A = 0. 
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The function K = K(') requires no rescaling, though now we must interpret K as 
K(s,  A ) .  The differential equation for K is 

Kss + ( m - A G l s  + ri& )Ks+(- l+ 1+As2 

and the boundary conditions for K1 and K2 at s = 0 are 

(4.22) 
fi4 + eiAfi2s eiAG1fi2 

AG1 - )K=O, 
As 

AG1s + riG2 

K i = l ,  K1, = ei(h 1/2G2 - f i 2 ) ,  

K 2  = ri, Kz,  = A 1'2G2 + €?2. 

( 4 . 2 3 ~ )  

(4.236) 

This DE is no simpler than the original DE I(3.8). Note that the two regular singulari- 
ties in I(3.8) at Y = *1 with exponents, -46 and $8, have coalesced to form a single 
irregular singularity at s = 00 in (4.22). Thus (4.22) is of type [2 ,1 ,1]  in the Ince 
(1927) classification scheme. The 'apparent' singularity with exponents 0 and 2 is still 
present at s = -ri&2(A61)-1. Without this 'apparent' singularity, (4.22) would be 
equivalent to a Mathieu equation (Arscott 1964). On the infinite redshift surfaces, 
r(A) = 0, the K equation actually reduces to a Mathieu equation. The optimum power 
series solution for (4.22), involving four-term recurrence relations and converging 
throughout the region, p > 0, 0 < 8 < T (rapidly except near p = 0), is obtained by 
letting S + 00 in the L equation, I(10.40). 

Now, the explicit formulae for the metric and Ernst potentials for the rotating 
Curzon metric are: 

( 4 . 2 4 ~ )  

(4.24b) 

( 4 . 2 4 ~ )  

(4.25) 

r(A ). (4.26) 
(Note that the formulae 1(3.10), 1(3.11), 1(3.12), which relate K'" to K(-'), are easily 
adapted to the case 6 = CO.) 

F 1-e - -2u=AK(')  1 Kj-'), 

F~ = -11 e - 2 ~  =~K~")K:- ' )+$K~")K~'- ' ) ,  

F 3-e - -2u(42_te4u)= , A - ~ K ~ ( E ) K ~ ( - . ) ,  
w = 2mq - mp(2Ei2 e-2u + G~ e-4u), 

= e - l / A  

On  the equatorial plane, s = 0, 
e2' = A-', w = 2mq + 2mp A(A ' 1 2 6 2  - R2). (4.27) 

On the symmetry axis, 8 = 0 or T, 

5 = p coth(mp/p)- iq cos 8 (4.28) 
For the approximate case of slow rotation, 141 << 1, 

5 = 50 + i d 1  + o(q2), 
where 

T O  = coth(m/p), 

t1 = (1 
03 

C bI(p)PzI-l(cos e), 
I =  1 

where 
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5. The generalised extreme Ken metric 

If S and m are kept fixed and the limit q 2  + 1 taken, then all solutions converge to the 
extreme Kerr metric involving the single parameter m. This was observed by Tomi- 
matsu and Sat0 (1973) assuming that p x  and y are held fixed, which is equivalent to 
holding ( r ,  z )  or (p, 6 )  fixed. Kinnersley and Kelley (1974) considered more fanciful 
limiting procedures ('distinguished limits') in which the canonical coordinates are not 
fixed but S is fixed (since only S = 1, 2, 3, 4 were available) and found a class of new 
but unphysical solutions. However, a glance at the quadrupole formula ( 1 . 1 ~ )  
suggests that the extreme Kerr metric can be generalised if, while q 2 +  1, we make 
S + 0 in such a way that 

(5.1) 1 
P I =  P S -  = Km-' 

is kept fixed. The resulting two-parameter family of solutions has mass m, angular 
momentum f m 2  and quadrupole m 3( 1 - 4~;). 

Since K remains finite in the limit, the coordinates (v, 17) and (x ,  y )  and the 
functions, H4, H2, ul, u2, r and A, do not require rescaling. So simply put S = 0 in the 
H4 equations 1(3.1), I(10.1) and r equations 1(10.4), I(10.5). The series solution (3.1) 
may be carried over to this case by rescaling r,(V)= S2"fn(q)  so that the series takes 
the form 

r(+r(q,pT)= l+~;~f '(7))+p;~f2(17)+. . . . 

f l  = -ln(l+ q-l), (5.3) 

(5.2) 
The first two coefficients are easily found to be 

f 2  = h 2 ( 1  + 17-l)- 2 ln(1 + 7-l) A- '  ln(1 S A - ' )  dh + 3 A-' ln2(1 + A  -') dA. 

(5.4) 
Ip 

All the f, are expressible in terms of elementary functions and quadratures. To 
obtain a DE for f,, it is better to substitute (5.2) into the fourth-order r equation, 
I(10.5) with S = 0. The result is 

7 2( 1 + ~ ) ~ f : " ) +  47 (1 + 77 )( 1 + 277)f: + (2 + 1417 + 1417 ')f: + (2 + 417)f = F, (17 ), ( 5 . 5 )  

where F n ( ~ )  is a homogeneous quadratic polynomial in rl, . . . , rn-' and their deriva- 
tives up to the fourth order. The DE ( 5 . 5 )  is exact. Hence a first integral is 

~ ( l  + ~ ) [ 7 ( 1 +  7)f: + (2 + 477)f: + 2fL] = -1 F,(A) dA. 

This is a somewhat simpler third-order DE for f, than that which results from the 
third-order r equation I(10.4). Integrating once more, 

m 

r) 

m 

7(1+17)f ;+(l+2~7)fL={ ?l A-'(l+A)-' lAmF,(p)dp  dA. (5.6) 

The next two quadratures are straightforward. 
Some useful properties of the coefficients f, are 

fn(7) = (-l>"fn(-1- v), 
f, (7 ) = k,q -?I2 + O( 7) -n2- ') as 77 +a, 
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where 

(1"-12"-23"-34"-4. . . (n - l)I4 
k,=(-l)" { n " ( n 2 -  1)n-1(~z-4)"-2(n2-9)n-3. , . [n'-(n - 1)2]}2' 
For large n, 

lknl - (0.416028158. . . )2-4n2(2~)2"n-1'2. 

(5.9) 

(5.10) 

It would appear that the series (5.2) converges more rapidly for large p1 than for 
small pl.  In fact, just the reverse is true. If p1 is small, then q is large and it is 
appropriate to rescale q as 1) = (l/p:)A. From (5.8) we see that for small pl,  

For p 1 =  0, 
r =  1 - A - l  where A = m-'p2 coset' 8. (5.11) 

This is precisely the case of the extreme Kerr metric. A similar argument may be 
applied to the original series (3.1) showing that convergence is most rapid when 4 is 
near 0 or *1 for a given value of (r, 2). 

The K equation I(3.8) changes very little when we put 6 = O .  The regular 
singularities at v = +1 have exponents 0 and 0. Thus both K1 and K2 are logarith- 
mically singular at u = f l ,  i.e. on the singular surfaces x 2 = y 2  or q =-1.  These 
surfaces, of course, lie beyond the natural boundary of the vacuum metric, x = 1,  as 
viewed from the asymptotically flat outer regions. 

The explicit formulae for the metric and Ernst potentials are obtained by putting 
S = 0 in (2.6a, b, c), (2.7) and (2.8). The additive constant 2~Sqp- l  in (2.7) becomes 
2mq with 4 = +1 and K becomes mpl. Similar comments hold for the formulae I(4.23) 
for'the equatorial plane. On the symmetry axis, y = *l, 

where 4 = + 1. 

6. Conclusion 

In the foregoing, we discussed four limiting cases of the generalised TS solutions of 
Einstein's equations introduced in I. Two of these were approximate metrics cor- 
responding to slow rotation and small deformation and in the former case we derived 
the TS 'rule (g) ' .  The other two limiting cases were exact solutions which we inter- 
preted as a rotating Curzon metric (8 -* CO) and as a generalised extreme Kerr metric 
(q2+ 1, S + 0). In these latter two cases, some simplification of the metric functions 
occurred but not enough to express them in terms of familiar transcendental functions. 

Notice that, as in I, we have restricted the parameter ranges so that K = mpS-' is a 
positive real number (or else K -* 0 through positive real values). Thus our spheroidal 
coordinates are prolate rather than oblate. For example, the parameter 4 in the 
rotating Curzon metric may take values 141 3 1 as well as - 1 < 4 < 1. The cases 4 = * 1 
are precisely extreme Kerr metrics. For q 2  > 1, we may relabel coordinates and 
parameters as follows: 

( K ,  p ,  4, A ,  s)-* ( 4 2 ,  -ip, 4, -& -if). 
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Similarly, in the case of the generalised extreme Kerr metric, all the multipoles of the 
gravitational field are polynomials in p : .  So p1 may take pure imaginary values. The 
case p1 = 0 is again the extreme Kerr metric. For p :  < 0, we may relabel as follows: 

When p :  < 0, the singular surfaces x 2  = 1 and x2  = y 2  are no longer present. All that 
remains of them is a ring-shaped curvature singularity on the equatorial plane at R = 0, 
y = 0 which is in addition to the equatorial ring singularity lying on the inner of the 
two infinite redshift surfaces. The radial coordinate R may be continued through to 
negative values and onto an asymptotically flat negative f sheet. 

Another interesting contraction of the generalised TS solutions, which will be 
considered in a separate paper, yields a class of exact asymptotically non-flat solutions 
recently published by Ernst (1977). These solutions arose from a detailed study of the 
apparent directional singularity at x = 1, y = 1 in the TS solutions, particularly S = 2, 
by Economou (1976) and Ernst (1976). 
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